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1 Summary

The purpose of this in-house research project was to investigate supervised and semi-supervised
machine learning techniques for classification and pattern recognition by exploiting the nat-
ural sparsity in signals and through data dimension reduction, and to develop and tailor
algorithms for the extraction of intelligence from several huge heterogeneous data sets. The
research provides a mathematically rigorous foundation for models and algorithms that could
be applied toward technologies in the areas of autonomy, trusted systems, situational aware-
ness and machine guided data-to-decision processes.

This report describes the delivered results for three related research areas. First, an algo-
rithm to approximate the Dantzig selector is described. The Dantzig selector is a method to
approximate a sparse vector that captures the most essential information in a large amount
of data. The algorithm, which was developed in the course of this research effort, is an
iterative approach based upon solutions to a pair of proximity operator equations. The
algorithm is an improvement over current state-of-the-art methods in that it produces re-
sults of similar quality, but tends to converge significantly faster. Next, an `1 minimization
model is extended to incorporate overcomplete dictionaries. The extension allows one to
obtain a sparse representation of homogeneous and heterogeneous data, which in turn is
used to improve classification and pattern recognition using the sparse coefficient vectors.
Additionally the proposed method is demonstrated to separate composite signals using a
supervised machine learning technique. Finally, an unique method to perform rotational
invariant pattern recognition is described. The method is based upon an efficient strategy
for approximating the Gaussian-Hermite moments of a function using a collocation-based
optimization approach. The method described herein is an improvement in accuracy and
complexity over the commonly used brute-force approaches.

2 Introduction

Machine learning is the field concerning the conversion of data into usable information by
a computer through the discovery of patterns and trends that are present in the data, but
are typically difficult for a human to discern due to the sheer mass of the data and nuanced
interactions between variables in the feature space. A general machine learning model seeks
to label the high dimensional input data with the appropriate output classifiers. That is,
if X = {x1,x2, . . . |xi ∈ Rd} is a collection of d-dimensional real-valued input vectors and
Y = {y1, y2, . . . , yk|yi ∈ R} is a collection of real-valued output labels, a machine learning
process attempts to find a well-defined function f : X→ Y that accurately matches each xi
with its appropriate label f(xi) = yj. Machine learning techniques can follow the supervised,
unsupervised or semi-supervised paradigms.

Supervised machine learning techniques are used when the user has some known ground
truth pairs (x, y) available. The set of vectors with known classifiers is called the training
set, and this knowledge is exploited to intelligently extrapolate function pairs f(x) = y
for vectors x that are not encountered in the training set. Some specific approaches that
are categorized as supervised learning techniques include support vector machines, decision
trees, and the training of artificial neural networks, where each approach admits a number
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of specific algorithms. A standard example of supervised learning techniques is OCR (opti-
cal character recognition), which was popularized by the United States Postal Service, but
supervised learning techniques have applications in any general pattern recognition environ-
ment where a known training set is available. A properly sampled training set can prepare
the system for success, however reliance on a training set that does not accurately capture
the array of data one might encounter can lead to misclassification and unreliable results.
Additionally, the algorithms used in supervised learning work best for data that can be ex-
pressed in a features space of relative small effective dimension with linear relations among
the features.

On the other hand, unsupervised machine learning techniques classify the input data
according to similar structures that reveal themselves through mathematical data dimension
reduction and feature extraction. These techniques are employed when no training set is
available, and therefore also no target output attributes are known. Unsupervised learning
algorithms cluster the data into sets that exhibit similar properties. Common approaches to
unsupervised machine learning include k-means clustering algorithms, and can be achieved
through a variety of methods including PCA (principal component analysis) and SVD (sin-
gular value decomposition) techniques. The absence of a training set and target classifier
can offer advantages over supervised learning; allowing the data to reveal their own corre-
lations instead of having user-imposed restrictions on classification labels can provide richer
intelligence from the information.

The following described research draws from supervised and unsupervised machine learn-
ing paradigms, with an emphasis on reducing the effective dimension of the data by finding
accurate sparse representations of the data.

3 Methods, Assumptions, and Procedures

The objective of this research is to investigate machine learning techniques for classification
and pattern recognition, and to develop and tailor adaptive algorithms for application to
huge, heterogeneous data sets enabling the extraction of intelligence from information.

The approach uses two-scale supervised and unsupervised machine learning techniques
to discover inter- and intra-set relationships and to reduce the dimensionality of the data.

Unsupervised data dimension reduction through the use of `1 norm minimization and
PCA will be performed within each data set and across multiple sets to harvest the most
signification features while suppressing spurious information. The techniques used ensures
minimal redundancy of the representation of the data, and allows one to discover signifi-
cant interactions among the relevant features in each set and to enable better situational
awareness.

For the supervised learning aspect of the research, we will begin with a large collection
of known information, and analyze the characterizing relationship among the data in each
class. This will lead to a sufficiently large set of ground truth, as well as giving guidance
on the number of classes to be used, and the correct classification function f . These cannot
be known a priori - access to initial information is fundamental in developing a supervised
learning scheme. However, if the relationships in the data tend to be described well by a
linear classifier, the PCA technique can be used again in the discovery of f . For example,

2
Approved for Public Release; Distribution Unlimited.



if the principle component of x is p, and x is known to belong to class y, then any newly
encountered data with principle component p shall also be assigned to class y.

The algorithms will be developed and implemented using MATLAB. Speed and memory
usage may be improved by converting the algorithms to C.

4 Results and Discussion

Several new methods and algorithms were developed during the course of this research effort,
including an algorithm to quickly and accurately approximate the Dantzig selector [6], a
scheme to separate and classify undersampled composite data [7], and a novel method to
perform rotational invariant pattern recognition in images [8]. These three major research
products have been summarized in journal publications and conference proceedings. To
illustrate and verify the theoretical results of the main research products listed above, several
interesting numerical experiments were performed using real-world and simulated data with
large, homogeneous and heterogeneous data sets. Each is explained in more detail below.

4.1 Algorithm to Approximate the Dantzig Selector

The Dantzig selector is a solution to the optimization problem

β̂ ∈ argmin
β

{
‖β‖1 : ‖D−1X>(Xβ − y)‖∞ ≤ δ

}
, (1)

where y is the observed data, X is a known data matrix satisfying certain properties [4], D
is a diagonal matrix normalizing the columns of X, and δ is a small, user-chosen parameter.
Typically the dimensionality of β is much larger than that of y, however since the solution
to Equation (1) tends to be sparse, the Dantzig selector has a much lower effective dimen-
sionality that the original data. Therefore the Dantzig selector is an appropriate feature to
use for data dimension reduction to assist machine learning and classification tasks.

Several methods exist to compute a Dantzig selector, including a primal-dual interior
point method [3, 4], a first-order method based upon linear cone programming [1, 2], and an
alternating direction method [5]. Each has its own strength and weaknesses. For example, the
Alternating Direction Method of Multipliers is an iterative approach that tends to converge
to a solution of (1) in few iterations, however the total computational cost of this method is
large since each step in the iteration requires the solution of another optimization problem
via an iterative approach. To solve the Dantzig selector problem, Lixin Shen (SU), Bruce
Suter (AFRL/RITB) and Ashley Prater (AFRL/RITB) developed a two-stage approach.
The first stage approximates β̂ as the fixed point solution to a pair of iterative proximal
equations. This fixed point solution tends to very accurately recover the support of the
Dantzig selector, but allows errors in the magnitude of the nonzero entries. The second
stage, a postprocessing step, corrects this issue by regressing the observed data onto the
support of the fixed point solution.

In further detail, the optimization problem (1) can be expressed as

β̂ ∈ argmin
β
{‖β‖1 + ιC(Aβ)} , (2)
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where A = D−1X>X, b = D−1X>y, C = {β : ‖β − b‖∞ ≤ δ} and ιC(·) is an indicator
function on the set C. Solutions to Equation (2) can be characterized by β and τ satisfying{

β = prox 1
α
‖·‖1

(
β − λ

α
A>τ

)
,

τ =
(
I − proxιC

)
(Aβ + τ) ,

(3)

where, for a function f with parameter λ, the proximity operator is defined by

proxλf (x) := argmin
u∈Rd

{
1

2λ
‖u− x‖22 + f(u)

}
.

The iterative method developed as part of this research effort approximates a solution
of (3) as the fixed point solution of{

τ k+1 = proxδ‖·‖1
(
A(2βk − βk−1) + τ k − b

)
,

βk+1 = prox 1
α
‖·‖1

(
βk − λ

α
A>τ k+1

)
,

(4)

for k = 1, 2, 3 . . . . The fixed point solution of (4) can be solved straightforwardly using a soft
thresholding operator. The overall complexity of this iterative approach is O(np), where n
is the dimension of the observation y and p is the dimension of the Dantzig selector β̂.

The above method was compared to the popular Alternating Direction Method (ADM)
for finding the Dantzig selector. We found that while the accuracy of the approximated solu-
tions was nearly equal for the two approaches, our method was significantly faster. Notably,
the difference in CPU runtime for the two approaches grew larger as the dimensionality
increased and also as original data was corrupted by more noise.

To demonstrate the strength of the proposed method, Drs. Prater, Shen and Suter used
a large, heterogeneous data set of biomarker data and employed the Dantzig selector as a
classifier to predict whether a patient may have a future leukemia diagnosis. The dataset
included numerical data for over 7000 biomarkers. It is likely that only a small number of
genes will contribute to the likelihood of a patient developing leukemia in the future, but
it is a difficult problem for even a medically trained individual to identify the contributing
genes from the huge amount of data. We found that the Dantzig selector performed well in
determining the the small number of biomarkers from this dataset that contribute most to
a patient developing leukemia. The Dantzig selector was used in the following manner. To
train the output classes, we used a simple supervised machine learning approach. A portion
of the dataset was designated as ground truth, and the corresponding values of the observed
data vector y were set equal to 1 if a patient had a leukemia diagnosis and 0 otherwise.
The trained value of the Dantzig selector β̂ was then used with the unclassified test data
to compute the output observation ytest. Finally, the diagnosis of the patients in the test
category were predicted using a clustering method with two classes.

The method proposed above took on average less than 0.01 seconds for most parameter
selections and yielded only one misdiagnosed patient out of 204 trials. In comparison, the
ADM required more than 100 seconds on average and misdiagnosed 7 patients out of the
204 trials.

Futher details on the discussion above can be found in [6].
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4.2 Scheme to Separate and Classify Composite Data

After developing the algorithm described above to approximate the Dantzig selector, at-
tention was turned to extending both the model and the algorithm to accept more general
types of signals. The Dantzig selector model in Equation (1) yields a sparse solution β̂ only
for observations y admitting such a representation. This is a rather restrictive class of sig-
nals. Instead, we looked to incorporate into the model not only a representation basis, but
overcomplete dictionaries so one could use the model to analyze a rich class of images and
signals.

To this end, suppose that c is the signal or image one wishes to analyze, and that it is
comprised of several other atomic signals. Say, c = c1 + c2 + · · ·+ ck, where each individual
component cj is unknown. In applications it is unlikely that the individual components are
sparse, but each one could admit a sparse representation cj = Bjβj, where βj is a sparse
vector and Bj is a basis or dictionary. The Bjs could possibly coincide. In practice one does
not know a priori the sparse vectors βj, but typically one knows a good sparsifying basis Bj.
Given the observation y = Xc, where X is defined as in (1), one can incorporate these bases
into the model as

β̂ = argmin
{
‖β‖1 :

∥∥D−1B>X> (XBβ − y)
∥∥
∞ ≤ δ

}
, (5)

with the matrix B equal to the concatenation of the bases and the vector β equal to the
concatenations of the sparse vectors βj.

The proximity operator fixed point based algorithm described above can be easily ex-
tended to include these overcomplete dictionaries by redefining A, b and C as

A = D−1B>X>XB, b = D−1B>X>y, and C = {β : ‖b− β‖∞ ≤ δ}.

In [7], several numerical experiments illustrate the effectiveness of the scheme incorpo-
rating the overcomplete dictionaries into the Dantzig selector model. One experiment in
particular is interesting in that it is paired with supervised machine learning techniques to
perform separation and classification of images using the principal components of the Dantzig
selectors of the components. In the example compositions of two handwritten digits arsepa-
rated and classified. The handwritten digits are taken from the United States Postal Service
data set [10], which was then split into a training set and a testing set. The overcomplete
dictionaries were then formed using the principal components from the labeled examples
from each class included in the training set. That is, each Bj was formed by the first k
principal components of the collection Rj, where Rj was all training images in the jth class.
Supposing that c was a composition of two unlabeled digits taken from the testing dataset,
the Dantzig selector of c was computed from Equation (5). The unknown components of c
can then be immediately recovered and classified through the Dantzig selector, based on the
the support of β̂. An illustration of this method is shown in Figure 1.

Further details on the discussion above can be found in [7].

4.3 Method to Perform Rotational Invariant Pattern Recognition

Under this research effort, a mathematically rigorous method to perform pattern recognition
in noisy, possibly rotated images was developed that computes feature vectors using a sparse
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Original Image Actual Digit 1 Actual Digit 2

Recovered Digit 1 Recovered Digit 2

Figure 1: A composition of unknown handwritten digits separated using the Dantzig selector
with trained overcomplete dictionaries.

representation of the data. The approach was to write the unclassified two dimensional
image in terms of the bivariate Hermite polynomials, say

f(x, y) ≈
∑

(n1,n2)∈W

c(n1,n2)H(n1,n2)(x, y), (6)

where f describes the image, H(n1,n2) is the (n1, n2)− th Hermite polynomial, c(n1.n2) are real
valued coefficients, and W is an appropriately chosen index set. The Hermite polynomials
are used in the Fourier-like expansion (6) because certain combinations of their moments
are rotation invariant. The (n1, n2) geometric Gaussian-Hermite moment of the image f is
defined by

m(n1,n2) :=

∫∫
R2

f(x, y)H(n1,n2)(x, y)e−(x
2+y2)/2 dx dy. (7)

In [8], it is shown that for carefully chosen W , the (n1, n2)− th geometric Gaussian-Hermite
moment of f can be well approximated by the (n1, n2) − th coefficient appearing in the
expansion (6).

Computing the coefficients appearing in (6) is nontrivial. Each one is defined by a highly
oscillatory bivariate integral for which closed-form solutions exist in only rare cases. Each
is difficult to compute either directly or using quadrature methods, and one must perform
this approximation as many times as the cardinality of the index set W . To quickly and
accurately approximate the coefficients, and therefore also the geometric Gaussian-Hermite
moments of an image, Dr. Prater proposed in [8] using a sparse collocation-based approach.
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SupposeX is the Jacobi-like matrix defined byX(j, k) = Hk(xj), with the univariate Hermite
polynomial Hk and predetermined nodes Λ = {x1, x2, . . . , xm}. Then one can approximate
the entire collection of coefficients {c(n1,n2)} appearing in (6) by solving the optimization
problem {

minimize ‖c‖1
subject to ‖D−1X>(Xc− f)‖∞ ≤ δ.

(8)

Suppose ĉ is the solution to (8). One can approximate the rotation invariants of the
Gaussian-Hermite moments from ĉ using the equations documented in [8, 9]. The first few
rotation invariants of the Gaussian-Hermite moments are given by:

φ1 = ĉ(2,0) + ĉ(0,2),

φ2 =
(
ĉ(3,0) + ĉ(1,2)

)2
+
(
ĉ(0,3) + ĉ(2,1)

)2
,

φ3 =
(
ĉ(2,0) − ĉ(0,2)

) [(
ĉ(3,0) + ĉ(1,2)

)2 − (ĉ(0,3) + ĉ(2,1)
)2]

+ 4ĉ(1,1)
(
ĉ(3,0) + ĉ(1,2)

) (
ĉ(0,3) + ĉ(2,1)

)
.

To perform rotational invariant pattern recognition, we clasify images according to how
closely the collection of the rotation invariants match those of labeled test images. That is,
suppose {Φ1,Φ2, . . . , } are vectors of rotation invariants of the Gaussian-Hermite moments of
the labeled images {F1, F2, . . .}, and let Φ be the rotation invariants of the Gaussian-Hermite
moments of the unclassified image f computed using method (8). Then classify the image
f as a rotation of image Fj if

‖Φj − Φ‖1 ≤ ‖Φk − Φ‖1 , ∀k. (9)

The method described above is computationally superior to more direct ‘brute-force’ style
methods. The direct method would have several rotations of each example images included in
the training data set, resulting in more differences and comparisons to make in Equation (9).

For more details on the above, including numerical experiments using real-world and
simulated noise-free and noisy data, see [8]. The above work demonstrated this research can
be an effective pre-processing step and classification strategy for certain machine learning
tasks. This research sub-project will continue to be studied in the Neuromorphic Computing
group at AFRL/RI.

5 Conclusions

Throughout the research project, models and algorithms were explored and developed that
can be used to perform the supervised classification and pattern recognition in large, hetero-
geneous data sets. The research was broad in scope and has direction applicability in several
data domains, including the previously stated area of recognition vehicles from several data
sensor products. The PI will continue to pursue these directions in new research efforts.
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